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Heterogeneity, as it occurs in porous media, is characterized in terms of a 
scaling exponent, or fractal dimension. A feature of primary interest for two- 
phase flow is the mixing length. This paper determines the relation between the 
scaling exponent for the heterogeneity and the scaling exponent which governs 
the mixing length. The analysis assumes a linear transport equation and uses 
random fields first in the characterization of the heterogeneity and second in the 
solution of the flow problem, in order to determine the mixing exponents. The 
scaling behavior changes from long-length-scale dominated to short-length-scale 
dominated at a critical value of the scaling exponent of the rock heterogeneity. 
The long-length-scale-dominated diffusion is anomalous. 
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1. I N T R O D U C T I O N  

R a n d o m  fields provide  a na tu ra l  descr ip t ion  of rock  heterogeneit ies,  in the 
typical  case in which the geological  knowledge  of the rock is much  less 
deta i led than  is necessary to predic t  flow proper t ies  th rough  it deter-  
minist ically.  Rock  heterogenei t ies  are a ma jo r  mechan i sm governing  the 
per formance  of  enhanced  oil recovery processes,  (~~ and  they also p lay  an 
i m p o r t a n t  role in the ecology of po l lu tan t  t r anspor t  in g round  water.  ~13~ 
These heterogenei t ies  occur  and p roduce  i m p o r t a n t  effects on all length 
scales. In  the case of  pe t ro l eum reservoirs,  macroscop ic  heterogenei t ies  
result  in the in i t ia t ion  of f ingering instabi l i t ies  which degrade  the chemical ,  
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polymer, and miscible displacement processes of enhanced oil recovery. 
Even for the simplest oil-fluid displacement process (water displacing oil), 
they are primary factors limiting the total oil recovery. At the microscopic 
level, the statistical distributions of pore and throat geometries dominate 
the flow phenomena. A correct prediction of fluid flow through such 
porous media requires the integration of effects from many different length 
scales. This is called the scaleup problem. 

The solution of the scaleup problem on the basis of numerical simula- 
tion at all length scales would require a detailed knowledge of rock 
heterogeneities, which is not available from feasible observations, as well as 
extensive computer resources. 

We adopt an alternative approach to the scaleup problem in this 
paper. Rock heterogeneity, as it occurs in porous media, can be charac- 
terized approximately by a scaling exponent, or fractal dimension. Hetero- 
geneities of this kind can be described in a natural way by multi-length- 
scale random fields. The analysis we give for the scaleup problem assumes 
a linear transport equation and uses random fields first in the characteriza- 
tion of the heterogeneity and second in the solution of the flow problem. 

A feature of primary interest in two-phase flow is the mixing length. 
We show that the mixing length l=l(t) between two fluids in 
heterogeneous media has an anomalous diffusion behavior l =  O(t ~) for 
1/2 ~< e ~ 1, where e is a scaling exponent which characterizes the mixing 
behavior, and which depends on the scaling properties of the rock 
heterogeneity. We also determine a critical value for the rock heterogeneity 
scaling behavior, which governs the transition from normal diffusion 
(c~ = 1/2) to anomalous diffusion (1/2 < c~). The analysis is conducted in an 
approximation in which the heterogeneities serve to advance or retard the 
flow along a streamline, but the streamlines themselves are assumed to be 
straight lines, i.e., not affected significantly by the heterogeneities. Field 
observations are consistent with a travel-time- or distance-dependent diffu- 
sion coefficient v ~ O(t~ 12/Since the mixing length I(t) for the diffu- 
sion equation is (vt) 1/2, we have l(t)~ O(t 1"7/2) ~ 0(t~ or ~ ~ 0.875. The 
data show considerable scatter, indicating that the anomalous dimension, 
e.g., e ~ 0.875, is not universal, but varies from reservoir to reservoir. In 
fact, ~ depends on the reservoir heterogeneity and especially on the degree 
to which the horizontal layering is (a) significant and (b) discontinuous or 
variable as a function of horizontal distance. Both of these geological 
properties vary from one reservoir to another, providing further justifica- 
tion of nonuniversality of e. In other contexts, anomalous diffusion results 
from a nonlinear diffusion equation (7) and from random velocity fields. (2) 
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2. A R A N D O M  FIELD DESCRIPT ION OF P O R O U S  M E D I A  

Flow in porous media is governed by Darcy's law, which expresses the 
flow velocity as 

v ~  - ( k / ~ ) V P  (2.1) 

Here P is the pressure, /~ is the fluid viscosity, and k =  k(x) is the rock 
permeability. We model k(x) with a log normal distribution, i.e., log k(x) 
is a Gaussian random field. Field data are usually fit well with a log 
normal distribution in the vertical direction. Horizontal variations of k 
are typically less extreme, and in the long-distance limit of concern to 
this paper, the correlation function is small. Thus, the distinction between 
normal and log normal distributions for horizontal variations in k does not 
show up in field data. For simplicity (i.e., to avoid the use of vertically 
scaled variables), we disregard the distinction in behavior between the 
horizontal and vertical directions, and treat the random field as isotropic 
and stationary. 

Consider a linear transport law 

u, + vux = 0 (2.2) 

for transport of the relative volume fraction u of one of the fluids. An inter- 
face x = x ( y , z ,  t) between the fluids moves passively with the particle 
velocity v. Both u and x are random fields, depending on the Gaussian 
random field ~ = l n k - ( l n k ) .  Let / ( t )= ( ( x - ( x ) ) 2 )  ~/2 be the mixing 
length. Central to our analysis of the scaling law for l(t) is a decomposition 
of ~ into long- and short-length-scale components. This decomposition is 
time dependent, as is typical of situations to which the renormalization 
group applies, The crossover length scale separating short- from long- 
length-scale behavior is given by the expected travel distance D(t)= ( v ) t .  
The long-distance fluctuations add coherently in each realization ~ of the 
random field. Short-distance fluctuations add incoherently. To understand 
them, we replace space averages by ensemble averages, and estimate l(t) in 
terms of a random walk. Let 

(~(x) ( (y ) )  -- O([x - Yl-~) (2.3) 

for fl t> O. Our main result is 

l(t) = O(t ~) (2.4) 

where ~ = max(l /2,  1 -  ill2}. It follows that the critical value tier of the 
rock heterogeneity exponent fl governing the transition between normal 
and anomalous diffusion is flor = 1. 
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To simplify the analysis, we represent ~ as a hierarchical random field, 
in d space dimensions. ~5) Associated with ~ is a sequence of lattices 2nZ d, 
indexed by n and with spacing 2L We introduce the Hilbert space Hn = 
L2(2~Za). With f, g ~ H~ interpreted as functions on R a which are piecewise 
constant on mesh blocks, H~ has the inner product ( f ,  g ) = Y ~ f ~ .  Let i 
and j be vectors in 2"Z a. A scaled white noise covariance C~ on H,  is 

C , = 2  n~IH=2-n~6~ (2.5) 

By the general theory, (6) Cn defines a Gaussian measure and a cutoff 
Gaussian field ~, which takes on a constant value on each of the lattice 
squares of the lattice 2nZ a. We define ~ = Y', ~n. The correlation function of 

is 

2 n / >  [ r l  - -  r21 

~ 2-~=O(tr l - - r2 t  P) 
2 n ) I r l  - -  r21 

(2.6) 

for "typical" points rl and r2. This is the desired asymptotic behavior of the 
correlation function. 

It is also of interest to present an alternative description of a random 
field ~ which is fully scale invariant3 8) We first discuss specification of 
boundary conditions at well locations and at the reservoir boundary. We 
define a generalized fractal free field in terms of the Fourier transform )~2 
of its two-point function f2 : 

f2(k) = f dx eiXX(t~(x) ~(0))  

= f (k 2 + m 2) -~ dp(m) (2.7) 

In this definition, generalized refers to the arbitrary combination of length 
scales contained in the measure dp, and fractal refers to the arbitrary power 
law behavior given by the exponent 7- For 7=  1, m2=0,  i.e., do(m)= 
6(m) dm and in one space dimension, 0 defines a Wiener process, having 
independent increments. That is, increments in observations made at 
different locations are uncorrelated. Field observations suggest, on the 
contrary, the existence of statistically significant trends. Following ref. 9, we 
represent these trends by choosing 7 > 1 and rn 2= 0, for one-dimensional 
correlations along streamlines, and we now discuss the generalization of 
this idea to higher space dimensions. 
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Imposition of boundary conditions in the form of point values at 
well locations on a discontinuous process is meaningless. The continuity 
properties of 4  ̀ are therefore important. Wiener processes (7 = 1) in space 
dimensions d >  1 are discontinuous. In fact, the set of continuous sample 
paths is of measure zero in the set of all sample paths. Moreover, the 
sample paths which are functions have measure zero, and the typical sample 
path is a Schwartz distribution of negative order. However, for ~ > 1 in two 
space dimensions, the random field 4' is continuous, for a.e. realization of 
0.(3,4) In order to have the one-dimensional sections (as would be observed 
along an outcrop) agree with the above one-dimensional fractal Brownian 
motion, we choose a covariance [k[ 27--(d--1); this will have the same 
regularity properties on one-dimensional sections (such as outcrops or 
streamlines) as the one-dimensional fractal Brownian motion with 
covariance [k[ -2v. This process has continuous sample paths in all 
dimensions. 

Thus, boundary conditions are imposed by constraining the values of 
to agree with observed values at well locations, and to vanish at the 

reservoir boundary. This constrained process ~ is related to the fractal free 
field or Wiener process by a change of variables in function space, 
involving the solution of a pseudodifferential equation. Let ~o denote the 
white noise process, with covariance operator I in Fot/rier space. The 
mapping T which connects 4' to ~b via the formula ~, = T~b transforms 
the covariance C (which is the identity operator I for qt) to TCT*, the 
covariance of ~. For translation-invariant operators, given by convolution 
kernels, the operator product is a convolution product. Thus, to achieve 
the specified covariance for ~, we choose as the mapping function T from 
% to 4' the convolution square root of the 4' covariance, which is thus 
]k[-~, (d-1)/2 in Fourier space and Ix[ y-(d+l)/2 in position space. In the 
case of boundary conditions, these full-space Green's functions must be 
modified so that the covariance satisfies boundary conditions, and the 
mapping between random fields is the operator square root of the 
covariance, which now does not have a simple expression in either position 
space or Fourier space. We note for later use that the mapping from white 
noise q~ to the reservoir variable (log permeability) 4' is either growing with 
x (d=  1) or decreasing slowly (d=  2, 3), so that in all cases the integral 
along streamlines diverges. The growth for large x of log permeability in 
this model is meaningless, and is resolved by use of boundary conditions, 
so that values of 4' are given at well locations and then interpolated with 
the constrained stochastic process between. 
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3. THE M I X I N G  LENGTH 

Consider the linear transport  law (2.2), with velocity defined by 
Darcy's law (2.1) and incompressibility, V ' v  = source terms. This system is 
known as miscible displacement. We take #~ = #2, where #~ is the viscosity 
for the ith phase, and then the system is neutrally stably with respect 
to fingering instabilities. As boundary conditions, consider a flow 
predominantly parallel to the x axis, with a pressure difference [ P ]  = 
PI~ o - P l y _  x specified between the domain faces x = 0 and x = X, and 
with no flow boundary conditions across the other four faces y = 0, y = Y, 
z = 0, and z = Z of a rectangular domain. 

We analyze separately the long- and short-length-scale fluctuations in 
~. Consider first the long-length-scale fluctuations. Asymptotically at large 
distances, ( ~ ] )  = 0(2  ~ )  is small and the log normal distribution can be 
approximated for our purposes by a normal distribution. In particular, 
( k )  = e <~" k> as far as the large length scale fluctuations are concerned. In 
this limit, we set V~ = 0 and regard VP as a nonrandom variable, which 
takes on a contant value. Then 

(<k>e ~) < k > ( l +  ~ 
v -  - - V P -  r  (3.1) 

# # 

At time t, the expected travel distance is 2 = Vo t, and so the long range part  
of ~ is Z{,:2o>~0~} ~,. Let 6 x = x - Y ~ .  Then 

dl( t ) , 4  

2t(0 - ~ t(t) 2 = 2<ax  av > 
dt bll 

In the long-distance limit, the random fluctuations in Cn contribute 
coherently to 6x and 6v. Thus, 6x is proportional  to ~v, and 

dt 

=2r ~t=2~v 2 ~t I 

Writing l=O(t~), we substitute, and determine that e =  1- /~/2,  i.e., 
l = O(t 1 ~/2). 

Next we consider the effect of the short-length-scale portion 
Z{n:z~ ~,, of the heterogeneity field. The length scales in question are 
large relative to unity, but small relative to the travel distance. In the 
approximation 2"<~ff, short-scale fluctuations add incoherently, and we 
can replace space averages by ensemble averages. In this regime, 
influences the front x as in a random walk, and O(t 1/2) behavior results. 
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However, the time t in O(t m) is scaled by the length of the perturbation 
and its covariance, as we now see. Moreover, in the short-length-scale 
regime, VP cannot be regarded as a classical, or nonrandom, variable. 

The pressure P is defined as the solution of the elliptic equation 

LP= V . ( ~  VP)  = source 

Let 

G = L  -~ , L 0 = V - ( ~ V ) ,  6 L = V -  ( ~ V ) ,  G o = L o  I 

We assume ~ is small, since we are interested in" the large-distance limit. To 
first order in 3, fiG= -Go 6LGo. Let So=VGoV, which in Fourier space 
has the expression (k |  k)/k 2. Then 

3v = -So~vo 

Note that So is a singular integral operator of order zero, defined by a 
Cauchy principal value, and decays like r d as r ~ oo. We see that the 
influence of ~ in a single heterogeneity mesh block can be integrated along 
streamlines and is localized near that block in both the streamwise and 
transverse directions. 

In computing (~X 2) we note that fix is a sum of terms depending on 
the ~ coming from different heterogeneity mesh blocks and lattices. In this 
sum, all cross terms drop out, because the summands contributing to ~ are 
independent. Thus, we can hold fixed the exponent n which characterizes 
the length scale and introduce the mean transit time t, =2"/Vo across a 
mesh block in the 2 n lattice. The contribution to fix from ~ in a single mesh 
block is 

f -  So ~Vo dt 

where the integral is taken in time, along a streamline. 
For a given ~, mesh block, the covariance of the fluctuating portion 

~x is 

(6x 2) = 0(2-( 2 ~)) 

According to the central limit theorem, l(t) is asymptotic to ~x/N, where 
N = tvo2-~ is the number of independent mesh blocks contributing to this 
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sum and a =  ~(~x) 1/2. This argument does not require the field ~ to be 
Gaussian. Thus, 

l(t) ,~ [(tv0 2 n) (2n (2  9))] 1/2 = V~/2tl/Z2n(1/2-9/'2) 

For 0 ~< fl ~< 1, we can evaluate at the maximum short-range value of n, so 
that 2 " = r o t  and 

I(t) = o (v~  9/2t~ 972) 

while for fi ~> 1, the maximum short-range value effect occurs for n = O(1 ). 
In this case l ( t )=  o(tl/2), which is the conventional diffusion limit. 

4. D I S C U S S I O N  A N D  C O N C L U S I O N  

To model anomalous diffusion processes at the continuum level, as 
predicted in the previous section, we consider the equation 

u~ + VUx = D(u) (4.1) 

where D is a linear differential or pseudodifferential operator. We discuss 
two approaches to determine D. The conventional approach is to take 
D = vA, where the diffusion "constant" v is a function of the flow history, 
and in particular of the travel time or distance along stream lines. For 
example, the relation v = O(t ~ was discussed above, on the basis of field 
data. To avoid history dependence, and to obtain a properly posed initial 
value problem for time integration of a differential equation, it is necessary 
to enlarge the set of state variables. For  example, flow distance along 
streamlines could be regarded as a new dependent variable, and the system 
of equations enlarged to include this variable. 

The derivation of Section 3 supports the notion of history-dependent 
diffusion. The diffusion results from an averaging process. The formalism of 
compensated compactness (~) would appear to be useful in this connection. 
If the averaging is over an ensemble of reservoirs, then there is no history 
dependence. All length scales then contribute to the averaging process for 
all time. Normally this is not what is wanted. If the averaging is over space, 
for a single reservoir selected from an ensemble, then only small-scale 
fluctuations (on a scale less than the travel distance, which is normally 
larger than the averaging length scale) contribute to the average, while 
large-scale fluctuations contribute to a coherent uncertainty in frontal 
position associated with the selection of a single reservoir from the 
ensemble. To see that Section 3 leads to this picture, we note that 
the generator of a sum of independent diffusion processes is the sum of the 
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generators. Similarly, the convolution product of the Gaussian solution 
operators is still a Gaussian. The above reasoning determines which terms 
or factors to include in the sum or product. For spatial averages, the result 
is history dependent, as discussed above. 

Spatially averaged anomalous scaling behavior can be obtained when 
D is a pseudodifferential operator of fractional order. Pseudodifferential 
operators in time of order 1/2 have been used to model transients in diffu- 
sion for pipeline flow. ~14~ Scaling arguments show that in order to obtain 
anomalous diffusion, l ( t )  ~ O(t~) ,  1/2 < c~ < 1, we should choose D to have 
order 1/c~. A translation, x - - ,  x - v t ,  into comoving coordinates eliminates 
the vux term from (4.1) and yields u t = D ( u ) .  Anomalous scaling, x - - - , ax ,  

t ~ al/~t, now shows that the order of D should be chosen as 1/c~. 
It is possible to use local, but nonlinear, differential operators (as 

opposed to pseudodifferential operators) to obtain anomalous diffusion in 
the continuum equations. (7/The analysis of ref. 2 is closer methodologically 
to ours (the two efforts were conducted independently), but differs in 
detail; in particular, the heterogeneity models proposed there lead to a 
single value for the anomalous diffusion exponent. 

If averages over a fixed (small) length scale (or conceptually point 
values of the solution) are desired, as is required for the correct treatment 
of most nonlinear flow processes, then only the small-length-scale diffusion 
is used, l=  O(tU2), and the multi-length-scale heterogeneous aspects of the 
flow mixing behavior must be described by additional state variables, 
leading to an enlarged system, such as the dual porosity models used to 
describe fractured reservoirs. 

To summarize, we have shown that multi-length-scale random 
fields are useful for modeling petroleum reservoir heterogeneity and the 
associated fluid flow. We provide a theoretical explanation for the observed 
anomalous diffusion. We found the critical scaling exponent/~c~ = 1 of the 
rock heterogeneity for the crossover from regular to anomalous diffusion. 
Further study is needed not only to amplify the solution proposed here, 
but to examine the hypotheses proposed. There is, for example, no reason 
for expecting geological variability to be characterized by a one-parameter 
family of Gaussian measures, specified by a single scaling law. 
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